When performing any tests on an audio system, some form of measuring device is essential. Digital multimeters are not useful, since they will not give the true picture of what is happening, and most have a fairly limited frequency range. An oscilloscope equipment is the ideal tool for audio test, but not all hobbyists can afford the outlay for a scope, and would find justifying the not inconsiderable cost a tad difficult.

The AttenuatorsThe two attenuator networks are shown in Figures 1 and 2, and as you can see the Hi-Z version requires all those capacitors. They must be accurate, too. Otherwise high frequency performance will be all over the place, so you need a capacitance meter or a source of close tolerance caps. The resistors are standard E24 series 1% metal film types, and the caps (if used) should ideally be polystyrene or polyester, but if ceramic is all you can get, then ceramics are what you use. If you do have to use ceramic caps, make sure that they have low thermal drift - NPO or similar.

Complete Meter AmplifierThe entire audio test circuit can be built easily on a piece of perforated board (Veroboard or similar is good for this type of circuit), and a printed circuit board is quite unnecessary. Lay the physical circuit out following the schematic layout as closely as possible. This nearly always works well with discrete circuits, and makes it easy to follow 10 years later when you need to fix it. (I have had mine for nearly 20 years, and have not had to fix it yet.)

No comments:
Post a Comment